Monday, 24 August 2020

How math predicts life on Earth and the universe beyond | Michio Kaku, Michelle Thaller & more


How math predicts life on Earth and the universe beyond Watch the newest video from Big Think: https://bigth.ink/NewVideo Learn skills from the world's top minds at Big Think Edge: https://bigth.ink/Edge ---------------------------------------------------------------------------------- There is a pervasive cultural attitude against mathematics, but it is actually a mind-blowing tool for analyzing and predicting the world around us—and far beyond. We asked mathematicians Edward Frenkel and Po-Shen Loh, and physicists Michio Kaku, Michelle Thaller, Janna Levin and Geoffrey West to explain the wonders of math. West explains the rule of 'quarter-power scaling' in biology—there is a mathematical equation that predicts how much food an organism needs to eat to survive and it's remarkably consistent, whether you're looking at ladybugs, cats, elephants, and even trees and flowers. Math underpins our lives in incredible ways. Infinitesimal calculus—the math that describes how moving bodies change over time—turns out to predict not just phenomena on Earth but far out in the universe. The 11-dimensional math used by physicists turns out to predict the exact results of particle physics experiments. Humanity is on an incredible journey with mathematics and every day it opens up the world and universe in eye-opening ways. Read Edward Frenkel's latest book Love and Math: The Heart of Hidden Reality at https://amzn.to/3gpIxfD ---------------------------------------------------------------------------------- TRANSCRIPT: MICHELLE THALLER: Mathematics is in some ways kind of scary in how useful it is at really describing how the universe works around us. Now, I mean to give you an idea, the origin of mathematics seems very straightforward. We can count on our fingers up to ten and maybe it was useful to understand how many sheep you had so you could start counting sheep. And then you either added or subtracted sheep as you got more or as you lost some. It was a simple thing. We learned how to count. We learned how to add and subtract. The idea of multiplying and dividing is a little more abstract but that also makes sense. That's something that we can kind of visualize. But then what amazes me is that this led us on a tremendously complicated journey that's still going on to this day and we had no idea where this would lead us. EDWARD FRENKEL: It's a very unfortunate situation when you can't even begin a conversation about mathematics without people saying 'Oh, my gosh. I don't want to talk about it.' And it's kind of strange because no one would ever say 'I hate literature' or 'I hate art' or 'I hate music.' At least, intelligent people would never say that. It's kind of shameful to say that. But it's perfectly okay in our society to say 'I hate mathematics.' And so what I dream of is a society in which it's not that everyone has a Ph.D. in mathematics, but rather I would like to live in a society in which if mathematics is brought up someone would say 'Oh, mathematics. Interesting. How do I find out more? Can you give me a gist of the idea?' I'm not scared of it. I'm curious about it, the way I'm curious about the solar system, about the atoms and the DNA. All these things which are in our collective consciousness, in our public discourse, which are no simpler than mathematical concepts. Mathematical concepts are no more complicated than these concepts in physics and biology that are in the air, that are what we are aware of. So I would like people to be aware of this, of these mathematical ideas. I'd like them to be more and more aware of how mathematics invades our lives. How it's controlling our lives. MICHIO KAKU: In the 1600s, Isaac Newton asked a simple question: If an apple falls, then does the Moon also fall? That is perhaps one of the greatest questions ever asked by a member of homo sapiens since the six million years since we parted ways with the apes. If an apple falls, does the Moon also fall? Isaac Newton said yes, the Moon falls because of the inverse square law, so does an apple. He had a unified theory of the heavens, but he didn't have the mathematics to solve the falling Moon problem. So what did he do? He invented calculus. So calculus is a direct consequence of solving the falling moon problem. PO-SHEN LOH: I do think that everyone in America could benefit from having that mathematical background in reasoning just to help everyone make very good decisions. And here I'm distinguishing already between math as people usually conceive of it and decision making and analysis which is actually what I think math is. So, for example, I don't think that being a math person means that you can recite the formulas between sins, cosines, tangents and to use logarithms and exponentials interchangeably. That's not necessarily what I think everyone should try to concentrate to understand... Read the full transcript at https://ift.tt/2QnB99O

No comments:

Post a Comment